Computational Topology for Geometric Design and Molecular Design

نویسندگان

  • Edward L. F. Moore
  • Thomas J. Peters
چکیده

The nascent field of computational topology holds great promise for resolving several long-standing industrial design modeling challenges. Geometric modeling has become commonplace in industry as manifested by the critical use of Computer Aided Geometric Design (CAGD) systems within the automotive, aerospace, shipbuilding and consumer product industries. Commercial CAGD packages depend upon complementary geometric and topological algorithms. The emergence of geometric modeling for molecular simulation and pharmaceutical design presents new challenges for supportive topological software within Computer Aided Molecular Design (CAMD) systems. For both CAGD and CAMD systems, splines provide relatively mature geometric technology. However, there remain pernicious issues regarding the ‘topology’ of these models, particularly for support of robust simulations which rely upon the topological characteristics of adjacency, connectivity and non-self-intersection. This paper presents current challenges and frontiers for reliable simulation and approximation of topology for geometric models. The simultaneous consideration of CAGD and CAMD is important to provide unifying abstractions to benefit both domains. In engineering applications it is a common requirement that topological equivalence be preserved during geometric modifications, but in molecular simulations attention is focused upon where topological changes have occurred as indications of important chemical changes. The methods presented here are supportive of both these disciplinary approaches. University of Connecticut, Department of Computer Science and Engineering University of Connecticut, Department of Computer Science and Engineering, Department of Mathematics. Partial funding for both authors was from National Science Foundation grants DMS0138098, CCR 0226504 and CCF 0429477. All statements in this publication are the responsibility of the authors, not of the National Science Foundation. “mi03 ̇5 ̇10” 2005/3/20 page i i

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Topology for Geometric and Molecular Approximations

The goal of this research will be to provide sufficient conditions and tractable algorithms that guarantee the topological embedding of geometric approximations commonly used by modern geometric design systems. Particular focus is on the use of ambient isotopy as the measure of topological equivalence, which is stricter than the more traditional use of homeomorphism. Such topological guarantees...

متن کامل

A Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks

Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...

متن کامل

A New Approach of Backbone Topology Design Used by Combination of GA and PSO Algorithms

A number of algorithms based on the evolutionary processing have been proposed forcommunication networks backbone such as Genetic Algorithm (GA). However, there has beenlittle work on the SWARM optimization algorithms such as Particle Swarm Optimization(PSO) for backbone topology design. In this paper, the performance of PSO on GA isdiscussed and a new algorithm as PSOGA is proposed for the net...

متن کامل

Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm

An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...

متن کامل

Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005